Carotid body denervation alters ventilatory responses to ibotenic acid injections or focal acidosis in the medullary raphe.

نویسندگان

  • M R Hodges
  • C Opansky
  • B Qian
  • S Davis
  • J M Bonis
  • K Krause
  • L G Pan
  • H V Forster
چکیده

Our aim was to determine the effects of carotid body denervation (CBD) on the ventilatory responses to focal acidosis and ibotenic acid (IA) injections into the medullary raphe area of awake, adult goats. Multiple microtubules were chronically implanted into the midline raphe area nuclei either before or after CBD. For up to 15 days after bilateral CBD, arterial PCO2 (PaCO2) (13.3 +/- 1.9 Torr) was increased (P < 0.001), and CO2 sensitivity (-53.0 +/- 6.4%) was decreased (P <0.001). Thereafter, resting PaCO2 and CO2 sensitivity returned (P <0.01) toward control, but PaCO2 remained elevated (4.8 +/- 1.9 Torr) and CO2 sensitivity reduced (-24.7 +/- 6.0%) > or =40 days after CBD. Focal acidosis (FA) at multiple medullary raphe area sites 23-44 days post-CBD with 50 or 80% CO(2) increased inspiratory flow (Vi), tidal volume (Vt), metabolic rate (VO2), and heart rate (HR) (P <0.05). The effects of FA with 50% CO2 after CBD did not differ from intact goats. However, CBD attenuated (P <0.05) the increase in Vi, Vt, and HR with 80% CO2, but it had no effect on the increase in VO2. Rostral but not caudal raphe area IA injections increased Vi, BP, and HR (P < 0.05), and these responses were accentuated (P <0.001) after CBD. CO2 sensitivity was attenuated (-20%; P <0.05) <7 days after IA injection, but thereafter it returned to prelesion values in CBD goats. We conclude the following: 1) the attenuated response to FA after CBD provides further evidence that the carotid bodies provide a tonic facilitory input into respiratory control centers, 2) the plasticity after CBD is not due to increased raphe chemoreceptor sensitivity, and 3) the "error-sensing" function of the carotid body blunts the effect of strong stimulation of the raphe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raphe magnus nucleus is involved in ventilatory but not hypothermic response to CO2.

There is evidence that serotonin [5-hydroxytryptamine (5-HT)] is involved in the physiological responses to hypercapnia. Serotonergic neurons represent the major cell type (comprising 15-20% of the neurons) in raphe magnus nucleus (RMg), which is a medullary raphe nucleus. In the present study, we tested the hypothesis 1) that RMg plays a role in the ventilatory and thermal responses to hyperca...

متن کامل

Transient attenuation of CO2 sensitivity after neurotoxic lesions in the medullary raphe area of awake goats.

The major objective of this study was to gain insight into whether under physiological conditions medullary raphe area neurons influence breathing through CO(2)/H(+) chemoreceptors and/or through a postulated, nonchemoreceptor modulatory influence. Microtubules were chronically implanted into the raphe of adult goats (n = 13), and breathing at rest (awake and asleep), breathing during exercise,...

متن کامل

Effects on breathing of focal acidosis at multiple medullary raphe sites in awake goats.

To gain insight into why there are chemoreceptors at widespread sites in the brain, mircrotubules were chronically implanted at two or three sites in the medullary raphe nuclei of adult goats (n = 7). After >2 wk, microdialysis (MD) probes were inserted into the microtubules to create focal acidosis (FA) in the awake state using mock cerebral spinal fluid (mCSF) equilibrated with 6.4% (pH = 7.3...

متن کامل

The pontine respiratory group, particularly the Kölliker-Fuse nucleus, mediates phases of the hypoxic ventilatory response in unanesthetized goats.

The objective of the present study was to test the hypothesis that, in the in vivo awake goat model, perturbation/lesion in the pontine respiratory group (PRG) would decrease the sensitivity to hypercapnia and hypoxia. The study reported herein was part of two larger studies in which cholinergic modulation in the PRG was attenuated by microdialysis of atropine and subsequently ibotenic acid inj...

متن کامل

The role of the lungs in the adjustment of acid-base balance.

Pulmonary regulation of acid-base balance operates by retention or elimina­ tion of C 0 2 through adjustment of ventilation. Ventilation is controlled by a chemoreflex system with receptors in (1) the carotid bodies, which sense the arterial pH and (2) a locus on the ventrolateral surface of the medulla which senses the pH of the CSF. The carotid bodies also sense arterial P 0 2, and this inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 98 4  شماره 

صفحات  -

تاریخ انتشار 2005